Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Endocr Soc ; 8(4): bvae018, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38379854

RESUMEN

Context: Earlier nuclear magnetic resonance spectroscopy (NMR) studies of plasma lipoproteins estimated by size as small, medium, and large particles, demonstrated hypothyroidism was associated with increases in very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and intermediate-density lipoprotein (IDL) subclass particle number but variable changes in the high-density lipoprotein (HDL) subclasses. These disparate changes in HDL might be explained by reduced activity of the thyroid hormone-dependent remodeling proteins whose subclass specificity may be obscured when the 5 HDL subclasses identified by NMR are combined by size. Objective: This work aimed to determine whether directional changes in particle number of individually measured HDL subclasses correlate with reduced activity of their thyroid hormone-dependent remodeling proteins in hypothyroid individuals. Methods: VLDL, LDL, IDL, and HDL subclasses were measured by NMR in 13 thyroidectomized individuals 1 month following thyroid hormone withdrawal and 3 months after replacement. Changes in particle numbers in each subclass were compared when expressed individually and by size. Results: Following thyroid hormone withdrawal, plasma lipids and VLDL, LDL, and IDL subclass particle number increased. HDL particle number nearly doubled in very small HDL-1 (P = .04), declined in small HDL-2 (P = .02), and increased 2-fold in HDL-5 (P = .0009). Conclusion: The increment in HDL-1 and decline in HDL-2 subclasses is consistent with their precursor-product relationship and reduced lecithin cholesterol acyltransferase activity while the almost 2-fold increase in large HDL-5 is indicative of diminished action of hepatic lipase, phospholipid transfer protein, and endothelial lipase. These findings are inapparent when the 5 subclasses are expressed conventionally by size. This linking of specific HDL subclasses with HDL remodeling protein function provides new details about the specificity of their interactions.

2.
Diabetes ; 72(12): 1766-1780, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725952

RESUMEN

Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS: In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.


Asunto(s)
Resistencia a la Insulina , Humanos , Animales , Embarazo , Femenino , Adolescente , Resistencia a la Insulina/fisiología , Macaca fuscata/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Occidental/efectos adversos , Ácidos Grasos/metabolismo , Ceramidas/metabolismo , Dieta Alta en Grasa
3.
Am J Physiol Endocrinol Metab ; 324(6): E577-E588, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37134140

RESUMEN

Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate ß-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future ß-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter ß-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Embarazo , Animales , Masculino , Femenino , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Occidental/efectos adversos , Primates/metabolismo , Expresión Génica , Islotes Pancreáticos/metabolismo
4.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058409

RESUMEN

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Humanos , Animales , Femenino , Dieta Occidental/efectos adversos , Primates , Inmunidad Innata
5.
Hepatol Commun ; 7(2): e0014, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36691970

RESUMEN

Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Dieta Occidental , Antioxidantes , Fibrosis , Fenotipo , Primates
6.
JCI Insight ; 7(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34813504

RESUMEN

While current thinking posits that insulin signaling to glucose transporter 4 (GLUT4) exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle caused a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e., 1 hour) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulated this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects were due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurred downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.


Asunto(s)
Adipocitos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Glucosa/metabolismo , Músculo Esquelético , Adipocitos/citología , Adipocitos/metabolismo , Animales , Femenino , Insulina/metabolismo , Masculino , Ratones , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
7.
Front Endocrinol (Lausanne) ; 12: 785242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917036

RESUMEN

Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic ß-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce ß-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Esquema de Medicación , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/patología , Infusiones Intravenosas , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/patología , Mioblastos Esqueléticos/fisiología , Embarazo , Ovinos
8.
JCI Insight ; 6(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935645

RESUMEN

Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.


Asunto(s)
Dieta Occidental/efectos adversos , Cirrosis Hepática/fisiopatología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Animales , Femenino , Exposición Materna , Embarazo , Primates , Útero
9.
Sci Rep ; 11(1): 12977, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155315

RESUMEN

The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.


Asunto(s)
Dieta Occidental , Glucosa/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Alimentación Animal , Animales , Biomarcadores/sangre , Glucemia , Femenino , Edad Gestacional , Insulina/sangre , Macaca fuscata , Embarazo
10.
Diabetes ; 69(7): 1389-1400, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32354857

RESUMEN

Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a Western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n = 5-8/group) and juvenile (n = 8/group) offspring. In vivo signaling was evaluated after an insulin bolus just prior to weaning (n = 4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and postweaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action, suggesting earlier interventions may be warranted.


Asunto(s)
Dieta Occidental , Feto/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Músculo Esquelético/metabolismo , Obesidad Materna/complicaciones , Animales , Transporte Biológico , Femenino , Macaca fuscata , Fosforilación , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo
11.
J Cachexia Sarcopenia Muscle ; 11(2): 464-477, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31898871

RESUMEN

BACKGROUND: Reversible ε-amino acetylation of lysine residues regulates transcription as well as metabolic flux; however, roles for specific lysine acetyltransferases in skeletal muscle physiology and function are unknown. In this study, we investigated the role of the related acetyltransferases p300 and cAMP response element-binding protein-binding protein (CBP) in skeletal muscle transcriptional homeostasis and physiology in adult mice. METHODS: Mice with skeletal muscle-specific and inducible knockout of p300 and CBP (PCKO) were generated by crossing mice with a tamoxifen-inducible Cre recombinase expressed under the human α-skeletal actin promoter with mice having LoxP sites flanking exon 9 of the Ep300 and Crebbp genes. Knockout of PCKO was induced at 13-15 weeks of age via oral gavage of tamoxifen for 5 days to both PCKO and littermate control [wildtype (WT)] mice. Body composition, food intake, and muscle function were assessed on day 0 (D0) through 5 (D5). Microarray and tandem mass tag mass spectrometry analyses were performed to assess global RNA and protein levels in skeletal muscle of PCKO and WT mice. RESULTS: At D5 after initiating tamoxifen treatment, there was a reduction in body weight (-15%), food intake (-78%), stride length (-46%), and grip strength (-45%) in PCKO compared with WT mice. Additionally, ex vivo contractile function [tetanic tension (kPa)] was severely impaired in PCKO vs. WT mice at D3 (~70-80% lower) and D5 (~80-95% lower) and resulted in lethality within 1 week-a phenotype that is reversed by the presence of a single allele of either p300 or CBP. The impaired muscle function in PCKO mice was paralleled by substantial transcriptional alterations (3310 genes; false discovery rate < 0.1), especially in gene networks central to muscle contraction and structural integrity. This transcriptional uncoupling was accompanied by changes in protein expression patterns indicative of impaired muscle function, albeit to a smaller magnitude (446 proteins; fold-change > 1.25; false discovery rate < 0.1). CONCLUSIONS: These data reveal that p300 and CBP are required for the control and maintenance of contractile function and transcriptional homeostasis in skeletal muscle and, ultimately, organism survival. By extension, modulating p300/CBP function may hold promise for the treatment of disorders characterized by impaired contractile function in humans.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Animales , Homeostasis , Humanos , Ratones , Análisis de Supervivencia
12.
Am J Physiol Endocrinol Metab ; 318(2): E145-E151, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794263

RESUMEN

Sirtuin 1 (SIRT1) and general control of amino acid synthesis 5 (GCN5) regulate mitochondrial biogenesis via opposing modulation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) acetylation status and activity. However, the combined contribution of SIRT1 and GCN5 to skeletal muscle metabolism and endurance performance in vivo is unknown. In this study, we investigated the impact of combined skeletal muscle-specific overexpression of SIRT1 and deletion of GCN5 on glucose homeostasis, skeletal muscle mitochondrial biogenesis and function, and metabolic adaptation to endurance exercise training in mice. We generated mice with combined and tamoxifen-inducible skeletal muscle-specific overexpression of SIRT1 and knockout of GCN5 (dTG) and floxed [wild type (WT)] littermates using a Cre-LoxP approach. All mice were treated with tamoxifen at 5-6 wk of age, and 4-7 wk later glucose homeostasis, skeletal muscle contractile function, mitochondrial function, and the effects of 14 days of voluntary wheel running on expression of metabolic proteins and exercise capacity were assessed. There was no difference in oral glucose tolerance, skeletal muscle contractile function, mitochondrial abundance, or maximal respiratory capacity between dTG and WT mice. Additionally, there were no genotype differences in exercise performance and markers of mitochondrial biogenesis after 14 days of voluntary wheel running. These results demonstrate that combined overexpression of SIRT1 and loss of GCN5 in vivo does not promote metabolic remodeling in skeletal muscle of sedentary or exercise-trained mice.


Asunto(s)
Glucosa/metabolismo , Homeostasis/genética , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Sirtuina 1/biosíntesis , Sirtuina 1/genética , Factores de Transcripción p300-CBP/genética , Umbral Anaerobio/genética , Animales , Intolerancia a la Glucosa/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Contracción Muscular/fisiología , Biogénesis de Organelos , Carrera
13.
J Appl Physiol (1985) ; 127(4): 1117-1127, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513449

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) was recently found to be localized to mitochondria in a number of tissues and cell types, where it modulates oxidative phosphorylation via interactions with the electron transport proteins, complex I and complex II. Skeletal muscle is densely populated with mitochondria although whether STAT3 contributes to skeletal muscle oxidative capacity is unknown. In the present study, we sought to elucidate the contribution of STAT3 to mitochondrial and skeletal muscle function by studying mice with muscle-specific knockout of STAT3 (mKO). First, we developed a novel flow cytometry-based approach to confirm that STAT3 is present in skeletal muscle mitochondria. However, contrary to findings in other tissue types, complex I and complex II activity and maximal mitochondrial respiratory capacity in skeletal muscle were comparable between mKO mice and floxed/wild-type littermates. Moreover, there were no genotype differences in endurance exercise performance, skeletal muscle force-generating capacity, or the adaptive response of skeletal muscle to voluntary wheel running. Collectively, although we confirm the presence of STAT3 in skeletal muscle mitochondria, our data establish that STAT3 is dispensable for mitochondrial and physiological function in skeletal muscle.NEW & NOTEWORTHY Whether signal transducer and activator of transcription 3 (STAT3) can regulate the activity of complex I and II of the electron transport chain and mitochondrial oxidative capacity in skeletal muscle, as it can in other tissues, is unknown. By using a mouse model lacking STAT3 in muscle, we demonstrate that skeletal muscle mitochondrial and physiological function, both in vivo and ex vivo, is not impacted by the loss of STAT3.


Asunto(s)
Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Factor de Transcripción STAT3/metabolismo , Animales , Tolerancia al Ejercicio/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Contracción Muscular/fisiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/fisiopatología , Fosforilación Oxidativa
14.
Am J Physiol Cell Physiol ; 317(5): C964-C968, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461343

RESUMEN

Whether the histone deacetylase (HDAC) and sirtuin families of protein deacetylases regulate insulin-stimulated glucose uptake, independent of their transcriptional effects, has not been studied. Our objective was to determine the nontranscriptional role of HDACs and sirtuins in regulation of skeletal muscle insulin action. Basal and insulin-stimulated glucose uptake and signaling and acetylation were assessed in L6 myotubes and skeletal muscle from C57BL/6J mice that were treated acutely (1 h) with HDAC (trichostatin A, panobinostat, TMP195) and sirtuin inhibitors (nicotinamide). Treatment of L6 myotubes with HDAC inhibitors or skeletal muscle with a combination of HDAC and sirtuin inhibitors increased tubulin and pan-protein acetylation, demonstrating effective impairment of HDAC and sirtuin deacetylase activities. Despite this, neither basal nor insulin-stimulated glucose uptake or insulin signaling was impacted. Acute reduction of the deacetylase activity of HDACs and/or sirtuins does not impact insulin action in skeletal muscle.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Insulina/metabolismo , Músculo Esquelético/enzimología , Mioblastos/enzimología , Animales , Células Cultivadas , Femenino , Ácidos Hidroxámicos/farmacología , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos
15.
Mol Metab ; 25: 73-82, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036449

RESUMEN

OBJECTIVE: In humans, offspring of women who are overweight or obese are more likely to develop metabolic disease later in life. Studies in lower animal species reveal that a calorically-dense maternal diet is associated with alterations in islet cell mass and function. The long-term effects of maternal diet on the structure and function of offspring islets with characteristics similar to humans are unknown. We used a well-established non-human primate (NHP) model to determine the consequences of exposure to Western-Style Diet (WSD) in utero and during lactation on islet cell mass and function in the offspring. METHODS: Female Japanese Macaques (Macaca fuscata) were fed either control (CTR) or WSD before and throughout pregnancy and lactation. Offspring were weaned onto CTR or WSD to generate four different groups based on maternal/offspring diets: CTR/CTR, WSD/CTR, CTR/WSD, and WSD/WSD. Offspring were analyzed at three years of age. Pancreatic tissue sections were immunolabelled to measure α- and ß-cell mass and proliferation as well as islet vascularization. Live islets were also isolated to test the effects of WSD-exposure on islet function ex vivo. Offspring glucose tolerance was correlated with various maternal characteristics. RESULTS: α-cell mass was reduced as a result of maternal WSD exposure. α-cell proliferation was reduced in response to offspring WSD. Islet vasculature did not differ among the diet groups. Islets from WSD/CTR offspring secreted a greater amount of insulin in response to glucose ex vivo. We also found that maternal glucose tolerance and parity correlated with offspring glucose tolerance. CONCLUSIONS: Maternal WSD exposure results in persistently decreased α-cell mass in the three-year old offspring. WSD/CTR islets secreted greater amounts of insulin ex vivo, suggesting that these islets are primed to hyper-secrete insulin under certain metabolic stressors. Although WSD did not induce overt impaired glucose tolerance in dams or offspring, offspring born to mothers with higher glucose excursions during a glucose tolerance test were more likely to also show higher glucose excursions.


Asunto(s)
Dieta Occidental , Islotes Pancreáticos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Proliferación Celular , Femenino , Desarrollo Fetal/fisiología , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lactancia , Macaca , Masculino , Modelos Animales , Embarazo , Primates , Destete
16.
Am J Physiol Endocrinol Metab ; 317(1): E172-E182, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31136202

RESUMEN

Polycystic ovary syndrome (PCOS) is associated with high rates of obesity and metabolic dysfunction. Repeated passive heat exposure (termed heat therapy) is a novel lifestyle intervention for improving health in obese women with PCOS. The purpose of this study was to examine changes in metabolic function in obese women with PCOS following heat therapy. Eighteen age- and BMI-matched obese women with PCOS (age: 27 ± 1 yr, BMI: 41.3 ± 1.1 kg/m-2) were assigned to heat therapy (HT) or time control (CON). HT participants underwent 30 one-hour hot tub sessions over 8-10 wk, while CON participants completed all testing but did not undergo heat therapy. Before (Pre), at the mid-point (Mid), and following (Post) 8-10 wk of heat therapy, metabolic health was assessed using a 2-h oral glucose tolerance test, a subcutaneous abdominal fat biopsy (Pre-Post only), and other blood markers relating to metabolic function. HT participants exhibited improved fasting glucose (Pre: 105 ± 3, Post: 89 ± 5mg/dl; P = 0.001), glucose area under the curve (AUC) (Pre: 18,698 ± 1,045, Post: 16,987 ± 1,017 mg·dl-1·min-1; P = 0.028) and insulin AUC (Pre: 126,924 ± 11,730, Post: 91,233 ± 14,429 IU l-1·min-1; P = 0.012). Adipocyte insulin signaling (p-AKT at Ser-473 with 1.2 nM insulin) increased in HT (Pre: 0.29 ± 0.14, Post: 0.93 ± 0.29 AU; P = 0.021). Additionally, serum testosterone declined in HT participants (Pre: 51 ± 7, Post: 34 ± 4 ng/dl; P = 0.033). No parameters changed over time in CON, and no change in BMI was observed in either group. HT substantially improved metabolic risk profile in obese women with PCOS. HT also reduced androgen excess and may improve PCOS symptomology.


Asunto(s)
Tejido Adiposo/metabolismo , Glucemia/metabolismo , Calor/uso terapéutico , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Síndrome del Ovario Poliquístico/terapia , Adulto , Índice de Masa Corporal , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Inmersión , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/terapia , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/metabolismo
17.
Am J Physiol Endocrinol Metab ; 316(6): E1024-E1035, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30888860

RESUMEN

Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13-15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%-90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.


Asunto(s)
Proteína de Unión a CREB/genética , Proteína p300 Asociada a E1A/genética , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Animales , Proteína de Unión a CREB/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Técnicas de Inactivación de Genes/métodos , Mutación de Línea Germinal , Prueba de Tolerancia a la Glucosa , Ratones , Ratones Noqueados , ARN Mensajero/metabolismo
18.
Mol Metab ; 18: 25-41, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30337225

RESUMEN

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) risk begins in utero in offspring of obese mothers. A critical unmet need in this field is to understand the pathways and biomarkers underlying fetal hepatic lipotoxicity and whether maternal dietary intervention during pregnancy is an effective countermeasure. METHODS: We utilized a well-established non-human primate model of chronic, maternal, Western-style diet induced obesity (OB-WSD) compared with mothers on a healthy control diet (CON) or a subset of OB-WSD mothers switched to the CON diet (diet reversal; OB-DR) prior to and for the duration of the next pregnancy. Fetuses were studied in the early 3rd trimester. RESULTS: Fetuses from OB-WSD mothers had higher circulating triglycerides (TGs) and lower arterial oxygenation suggesting hypoxemia, compared with fetuses from CON and OB-DR mothers. Hepatic TG content, oxidative stress (TBARs), and de novo lipogenic genes were increased in fetuses from OB-WSD compared with CON mothers. Fetuses from OB-DR mothers had lower lipogenic gene expression and TBARs yet persistently higher TGs. Metabolomic profiling of fetal liver and serum (umbilical artery) revealed distinct separation of CON and OB-WSD groups, and an intermediate phenotype in fetuses from OB-DR mothers. Pathway analysis identified decreased tricarboxylic acid cycle intermediates, increased amino acid (AA) metabolism and byproducts, and increased gluconeogenesis, suggesting an increased reliance on AA metabolism to meet energy needs in the liver of fetuses from OB-WSD mothers. Components in collagen synthesis, including serum protein 5-hydroxylysine and hepatic lysine and proline, were positively correlated with hepatic TGs and TBARs, suggesting early signs of fibrosis in livers from the OB-WSD group. Importantly, hepatic gluconeogenic and arginine related intermediates and serum levels of lactate, pyruvate, several AAs, and nucleotide intermediates were normalized in the OB-DR group. However, hepatic levels of CDP-choline and total ceramide levels remained high in fetuses from OB-DR mothers. CONCLUSIONS: Our data provide new metabolic evidence that, in addition to fetal hepatic steatosis, maternal WSD creates fetal hypoxemia and increases utilization of AAs for energy production and early activation of gluconeogenic pathways in the fetal liver. When combined with hyperlipidemia and limited antioxidant activity, the fetus suffers from hepatic oxidative stress and altered intracellular metabolism which can be improved with maternal diet intervention. Our data reinforce the concept that multiple "first hits" occur in the fetus prior to development of obesity and demonstrate new biomarkers with potential clinical implications for monitoring NAFLD risk in offspring.


Asunto(s)
Dieta Saludable , Hipoxia/dietoterapia , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Obesidad/dietoterapia , Efectos Tardíos de la Exposición Prenatal/dietoterapia , Animales , Ciclo del Ácido Cítrico , Dieta Occidental/efectos adversos , Femenino , Gluconeogénesis , Hipoxia/metabolismo , Hígado/embriología , Hígado/metabolismo , Macaca , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Estrés Oxidativo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Triglicéridos/sangre
19.
Front Physiol ; 9: 789, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997524

RESUMEN

Introduction: The Phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in skeletal muscle insulin-stimulated glucose uptake. While whole-body and tissue specific knockout (KO) of individual or combinations of the regulatory subunits of PI3K (p85α, p55α, and p50α or p85ß); increase insulin sensitivity, no study has examined whether increasing the expression of the individual regulatory subunits would inhibit insulin action in vivo. Therefore, the objective of this study was to determine whether skeletal muscle-specific overexpression of the p55α regulatory subunit of PI3K impairs skeletal muscle insulin sensitivity, or prevents its enhancement by caloric restriction. Methods: We developed a novel "floxed" mouse that, through the Cre-LoxP approach, allows for tamoxifen (TMX)-inducible and skeletal muscle-specific overexpression of the p55α subunit of PI3K (referred to as, 'p55α-mOX'). Beginning at 10 weeks of age, p55α-mOX mice and their floxed littermates (referred to as wildtype [WT]) either continued with free access to food (ad libitum; AL), or were switched to a calorie restricted diet (CR; 60% of AL intake) for 20 days. We measured body composition, whole-body energy expenditure, oral glucose tolerance and ex vivo skeletal muscle insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake method. Results: p55α mRNA and protein expression was increased ∼2 fold in muscle from p55α-mOX versus WT mice. There were no differences in energy expenditure, total activity, or food intake of AL-fed mice between genotypes. Body weight, fat and lean mass, tissue weights, and fasting glucose and insulin were comparable between p55α-mOX and WT mice on AL, and were decreased equally by CR. Interestingly, overexpression of p55α did not impair oral glucose tolerance or skeletal muscle insulin signaling or sensitivity, nor did it impact the ability of CR to enhance these parameters. Conclusion: Skeletal muscle-specific overexpression of p55α does not impact skeletal muscle insulin action, suggesting that p85α and/or p50α may be more important regulators of skeletal muscle insulin signaling and sensitivity.

20.
Lipids Health Dis ; 17(1): 127, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29807532

RESUMEN

BACKGROUND: Previous studies of lipoproteins in patients with sepsis have been performed on density fractions isolated by conventional ultracentrifugation that are heterogeneous and provide no information about the cargo of apoproteins present in the immunochemically distinct subclasses that populate the density classes. Since apoproteins are now known to have important roles in host defense, we have separated these subclasses according to their apoprotein content and characterized their changes during experimental endotoxemia in human volunteers. METHODS: We have studied apoB- and apoA containing lipoprotein subclasses in twelve healthy male volunteers before and for 8 h after a single dose of endotoxin (ET; 2 µg/kg) to stimulate inflammation. RESULTS: After endotoxin, TG, TC, apoB and the apoB-containing lipoprotein cholesterol-rich subclass LpB and two of the three triglyceride-rich subclasses (TGRLP: Lp:B:C, LpB:C:E+ LpB:E) all declined. In contrast, the third TGRLP, LpA-II:B:C:D:E ("complex particle"), after reaching a nadir at 4 h rose 49% above baseline, p = .006 at 8 h and became the dominant particle in the TGRLP pool. This increment exceeds the threshold of > 25% change required for designation as an acute phase protein. Simultaneous decreases in LpA-I:A-II and LpB:C:E + LpB:E suggest that these subclasses undergo post-translational modification and contribute to the formation of new LpA-II:B:C:D:E particles. CONCLUSIONS: We have identified a new acute phase lipoprotein whose apoprotein constituents have metabolic and immunoregulatory properties applicable to host defense that make it well constituted to engage in the APR.


Asunto(s)
Inflamación/inducido químicamente , Lipoproteínas/aislamiento & purificación , Proteínas de Fase Aguda/aislamiento & purificación , Adulto , Femenino , Humanos , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/toxicidad , Lipoproteínas/clasificación , Lipoproteínas/inmunología , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...